
COP 3223: C Programming (Strings – Part 2) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Strings In C – Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Strings – Part 2) Page 2 © Dr. Mark J. Llewellyn

Alternatives To scanf And printf For Strings

• The scanf function ignores leading white space and terminates

its read with the first white space character it finds (scanf

always appends a null character to the end of the string that has
been read). Thus, a string read using scanf will never contain

white space. This makes scanf unsuitable for reading in several

words of text into a string.

• The gets function (also found in stdio.h), works in much the

same way as scanf with two notable exceptions:

1. gets does not skip leading white space before starting to red the

string.

2. gets reads until it finds a new-line character. Gets discards the

new-line character and replaces it with the null character.

COP 3223: C Programming (Strings – Part 2) Page 3 © Dr. Mark J. Llewellyn

Alternatives To scanf And printf For Strings

CAUTION

As scanf and gets read characters into an array, they have no way of

determining when the array is full. As a result, they may attempt to store

characters past the end of the array, causing unpredictable behavior.

scanf can be made safer by using the conversion specifier %ns, where n is

an integer indicating the maximum number of characters to be stored, with

subsequent characters simply being ignored.

Unfortunately, gets is inherently unsafe in this regard, so it is the

responsibility of the programmer to ensure that the number of characters read
by gets is always 1 less than the size of the array being used.

COP 3223: C Programming (Strings – Part 2) Page 4 © Dr. Mark J. Llewellyn

Alternatives To scanf And printf For Strings

• The printf function writes characters from the string one by

one until it encounters a null character. (In most C environments,

if the null character is missing, printf will continue printing

characters past the end of the string until it eventually finds a null

character, i.e., a byte containing all zeros, somewhere in the

memory.)

• Like a number, a string can be printed within a field. The
conversion specifier %ms will print a string right-justified in a

field width of size m. (A string with more than m characters will

be printed in full and not truncated.)

• Using the precision specifier, %m.ps, will cause the first p

characters of the string to be printed in a field width of size m.

• The example program on the next page illustrates some of these

features.

COP 3223: C Programming (Strings – Part 2) Page 5 © Dr. Mark J. Llewellyn

Using the %ns conversion

specifier to limit number

characters read into the array
by scanf

Using the %.ps conversion

specifier to limit number

characters printed from the
string printf

COP 3223: C Programming (Strings – Part 2) Page 6 © Dr. Mark J. Llewellyn

The %ns conversion specifier

limited the string to 9 characters

from the input

The %.ps conversion specifier

limited the printing of the string

to the first 4 characters.

Since the input string was longer than the input read (9

characters), and no white space has yet been encountered ,

the characters already in the input buffer are used to fill the

second string!.

COP 3223: C Programming (Strings – Part 2) Page 7 © Dr. Mark J. Llewellyn

Alternatives To scanf And printf For Strings

• The printf function is not the only function that can write

strings.

• The stdio.h library also includes a puts function, which

takes as a single argument, the string to be printed.

• The puts function works in much the same way as printf with

one notable exception:

1. puts always writes a new-line character and the end of the

string, thus advancing to the beginning of the next output line.

• The program on the following page illustrates using gets and

puts to read and write strings.

• Some of the functions in <stdio.h> are shown in the table on

page 9. To see all the functions in <stdio.h> you can go to:

http://en.wikipedia.org/wiki/Stdio.h

http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdio.h

COP 3223: C Programming (Strings – Part 2) Page 8 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 2) Page 9 © Dr. Mark J. Llewellyn

Some Of The Functions In <stdio.h>
Function Prototype Function Description

int getchar (void); Inputs the next character from the standard input and returns it

as an integer.

char *gets (char *s); Inputs characters from the standard input into the array s

until a newline or end-of-file character is encountered. A

terminating null character is appended to the array. Returns
the string inputted into s. An error will occur if s is not large

enough to hold the string.

int putchar (int c); Prints the character stored in c and returns it as an integer.

int puts (const char *s); Prints the string s followed by a newline character. Returns a

non-zero integer if successful, or EOF if an error occurs.

int sprintf (char *s,

const char *format, ...);

Equivalent to printf, except the output is stored in the array

s instead of printed on the screen. Returns the number of

characters written into s, or EOF is an error occurs.

int sscanf (char *s, const

char *format, ...);

Equivalent to scanf, except the input is read from the array

s rather than from the keyboard. Returns the number of items

successfully read by the function, or EOF if an error occurs.

COP 3223: C Programming (Strings – Part 2) Page 10 © Dr. Mark J. Llewellyn

Reading Strings Character By Character

• As we’ve seen in the previous few examples, due to the

manner in which scanf and gets read characters into

strings, they are often not the ideal way to enter string data

into an application program.

• Quite often a programmer will simply write their own

function for reading strings using a character by character

approach. This gives the programmer a greater degree of

flexibility and control than using the standard input

functions.

• However, things aren’t quite as simple as they may seem,

because now you must consider several issues when

designing your own string input functions.

COP 3223: C Programming (Strings – Part 2) Page 11 © Dr. Mark J. Llewellyn

Reading Strings Character By Character

• Among the issues to consider are:

• What character causes the function to stop reading characters

from the input? Will it be the new-line character, any white

space character, or some special character?

• Is the character that triggered the end of the string stored in the

string or discarded?

• Should the function skip any leading white space characters or

include them in the string?

• What should the function do if the input string is longer than

the array in which the string is to be stored? Should it discard

the remaining characters, or leave them to be read by the next

operation?

COP 3223: C Programming (Strings – Part 2) Page 12 © Dr. Mark J. Llewellyn

Reading Strings Character By Character

• When writing a character by character string input function all

of these questions need to be answered by the programmer.

• Suppose we wanted to write such a function with the following

conditions:

– The function should stop reading characters at the first new-line

character it encounters.

– The new-line character is not to be stored in the string.

– Leading white space characters are not ignored.

– If the input string is too long for the array, the extra characters are

discarded.

• The function on the following page satisfies these criteria.

COP 3223: C Programming (Strings – Part 2) Page 13 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 2) Page 14 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 2) Page 15 © Dr. Mark J. Llewellyn

Access To The Characters In A String

• Since strings are stored as arrays in C, as we’ve already

seen in the first section of the notes on strings, you can

use the array subscripting notation to access the individual

characters in a string. (See page 7 of String In C – Part 1).

• So, just as we can read in strings character by character,

we can also move through the string character by

character. A simple loop can accomplish this task for us.

• The program on the next page uses a function named

countBlanks simply returns the number of blank

characters in an input string passed to it as a parameter.

COP 3223: C Programming (Strings – Part 2) Page 16 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 2) Page 17 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 2) Page 18 © Dr. Mark J. Llewellyn

Using The String Handling Library In C <string.h>

• The string handling library <string.h> includes many

useful functions for manipulating strings.

• Functions included in <string.h> handle copying strings,

concatenating strings, comparing strings, searching strings for

characters and substrings, tokenizing strings (separating strings

into logical pieces), and determining the length of strings.

• The next page list some of the more commonly used functions

in <string.h>, but for a complete listing you can go to:

http://en.wikipedia.org/wiki/Memcpy#Functions

• A series of small programs begins on page 20 that illustrate

some of these more commonly used functions from
<string.h>.

http://en.wikipedia.org/wiki/Memcpy
http://en.wikipedia.org/wiki/Memcpy
http://en.wikipedia.org/wiki/Memcpy
http://en.wikipedia.org/wiki/Memcpy
http://en.wikipedia.org/wiki/Memcpy
http://en.wikipedia.org/wiki/Memcpy
http://en.wikipedia.org/wiki/Memcpy

COP 3223: C Programming (Strings – Part 2) Page 19 © Dr. Mark J. Llewellyn

Some Of The Functions In <string.h>

Function Prototype Function Description

char *strcpy (char *s1,

const char *s2);

Copies string s2 into array s1. The value of s1 is returned

(i.e., a pointer to s1 is returned). s2 is not modified.

char *strcat (char *s1,

const char *s2);

Appends string s2 to array s1. The first character of s2

overwrites the terminating null character in s1. The value of

s1 is returned (i.e., a pointer to s1 is returned). s2 is not

modified.

int strcmp (const char

*s1, const char *s2);

Compares string s1 with s2. The function returns 0 if s1 is

equal to s2; returns a negative value if s1 less than s2;

returns a positive value if s1 is greater than s2. Neither s1

nor s2 is modified.

char *strchr (const char

*s, int c);

Locates the first occurrence of character c in string s. If c is

found a pointer to c in s is returned. Otherwise, a NULL

pointer is returned. The string s1 is not modified.

char *strstr (const char

*s1, const char *s2);

Locates the first occurrence in string s1 of string s2. (That is

to say that s2 is a substring of s1). If the string is found, a

pointer to the string in s1 is returned. Otherwise, a NULL

pointer is returned. Neither s1 nor s2 is modified.

COP 3223: C Programming (Strings – Part 2) Page 20 © Dr. Mark J. Llewellyn

This version of the string copy example

uses explicit pointers. A pointer is

declared and assigned to each

character array (string). When the
parameter are passed to strcpy,

pointer values are sent and returned.

COP 3223: C Programming (Strings – Part 2) Page 21 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 2) Page 22 © Dr. Mark J. Llewellyn

This version of the string copy example

does not use explicit pointers.
However, since the strcpy function

returns a pointer, we must declare one

for the return value, but we simply

discard it (i.e., never use it).

COP 3223: C Programming (Strings – Part 2) Page 23 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 2) Page 24 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Strings – Part 2) Page 25 © Dr. Mark J. Llewellyn

Since the

second

sentence did

not start with

a blank , the

concatenated

sentence

does not

have a space

between the

two

sentences as

does the

second

version.

COP 3223: C Programming (Strings – Part 2) Page 26 © Dr. Mark J. Llewellyn

Practice Problems

1. Redo Practice Problem #1 from Strings In C –

Part 1 where you wrote a program that reads in

two strings and then determines if the strings
are the same or not. This time, use the strcmp

from <string.h> rather than your own

function.

2. Write a program that will have the user enter

two strings and then determine if the second

string is contained in the first string.

